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Re-Entry Trajectory Tracking Via an 
Inverse Dynamics Method 
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Atmospheric Re-Entry guidance is divided as longitudinal and lateral. This paper proposes 

a longitudinal reference trajectory and control law using the inverse dynamics method with 

pseudospectral Legendre method. Application of this method into Re-Entry problem forces a 

power of calculation time-reduction due to unnecessary of integration or any iteration as well 

as sufficient accuracy convergence. The used guidance scheme is time-to-go. 
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1. Introduction 

Reviewing the space-technological history of 

human, there was a great revolution for a short 

period of time. Russia had launched the first 

satellite in Oct. 1957. And in July 1969, Apollo 11 

achieved the dream of human landing on the 

moon. According to the history of science, the 

development and employment of various satellite 

missions such as science, communication, obser- 

vation etc. become more important. The previous 

profile of the satellite orbit entry consists of the 

loading of the satellite in the launch vehicle, 

launch, de-orbit, separation from the launch ve- 

hicle, and orbit entry for a mission performance. 

The launch vehicle separates sequentially the 

multi-step rockets and the fuel tank from the 

main module until an ejection of satellite. The 
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last remained module becomes the space waste. 

Thus, economic problem is considerable point 

due to large number of launches. To sustain the 

variety and the precision of space-technology 

with the acceleration of the times, space develop- 

ment becomes an activity that needs system ar- 

rangement with the economy. For this reason, a 

new generation reusable payload vehicles have 

been developed in several countries. Herein, the 

guidance problem for a RE vehicle is difficult 

because it will have limited control (i.e., L/D).  

The density and winds along its RE trajectory 

are unpredictable, and there will be a high accu- 

racy requirement for RE and recovery. 

The main idea of the RE guidance is to set 

up a reference drag acceleration profile within 

the permissible entry corridor, adjust and track 

this profile, many researchers made a lot of im- 

provements on the RE scheme. For example, 

calculus of variation (COV) algorithms have 

been considered by Baker, Causey and Ingram, 

1971. In 1983, Harpold and Graves, Jr. analyzed 

the reference trajectory by dividing each seg- 

ment according into the predominant constraints. 

And Alberto Cavallo proposed an LQR control 

scheme for RE in 1996. Although several work 
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was dedicated to determine the RE guidance 

using optimal control methods, very few papers 

studied the on-l ine RE guidance. 

This paper proposes the RE guidance system 
(Lee and Cho, 2002) for the RLV (Reusable 

Launch Vehicle) via efficient algorithms with 

Spectral Legendre methods so that the idea can 

be used for on-line RE guidance. Legendre poly- 

nomial is one of global orthogonal polynomials 

like Chebyshev (Lee, 2003). These polynomials 

are used extensively in spectral methods for 

solving fluid dynamic problem, but their use in 

solving optimal control problems has created a 

new way of transforming them to NLP problem. 
Its particular merit is its close relationship to 

Gauss-type integration rules. This relationship 

can be derived simple rule for transforming the 

original optimal control problem to a system of 

algebraic equations. The main idea of this algo- 

rithm is to reduce an optimal control problem 

to algebraic equations. Therefore, because the 

guidance law obtained from this process does not 

need any integrations or iterations, this scheme 

can be rapidly performed in the real time manner. 

2. Generation of  a Reference 
Trajectory 

2.1 Dynamics of re-entry 
Because the RE flight (Regan and Anan- 

dakrishnan, 1993) for the space vehicle follows 

after the ascent flight, the design of ascent and 

RE trajectories are carried out simultaneously. 

The dimensionless equations of motion (Roen- 

neke, 1993 ; Cavallo, 1996 ; Lu. 1997) of the RE 

vehicle can be described under the following as- 

sumptions, and considered as a nonlinear t ime- 

varying system. 
1. The earth is assumed to be a non-rotating 

sphere. 
2. The non-thrusting RE space vehicle is as- 

sumed as a point mass from the vertical plane of 

the earth. 

~ = v  sin 7 (1) 

b = - D - - ~  sin 7 (2) 
r ~ 

L 

Earth center 

Fig. 1 

East 

V 

Vectors for the RE vehicle 

( 7=--v - u +  vz--  r v  (3) 

D= pSvZCD L-- pSvZCz (4) 
2 m  ' 2 m  

u=-~D cos a (5) 

where r is the radial distance from the earth 

center to the RE vehicle, normalized by the 

earth radius re, the Earth-relative velocity v is 

normalized by g0vr~r~e (go is gravitational acceler- 

ation at sea level). 9" is the flight path angle, /z 
is defined as the gravity constant, l z / r  2 can be 

described as the gravity acceleration g. Aero- 

dynamic acceleration D and L are normalized 

by go. The control variable u can be defined 

as the function of the hank angle a and the 

vertical component of the l i f t - to-drag ratio. The 

drag coefficient is C, ,  the dynamic pressure q, 

the reference area S, the mass m, the lift coeffi- 

cient Cz and the atmospheric density p. 

We should notice the angle of attack tr is 

selected in preflight. Fig. 1 shows the vectors for 

the RE vehicle. 

2.2 Constraints 
The reference drag acceleration is defined 

within the RE corridor which means a per- 

missible flight corridor. This RE corridor for 

the RLV must satisfy the following trajectory 

constraints (Lu, 1997). 

l) Heating rate constraint 
The heating rate (Incropera and DeWitt, 1985) 

is decided by the performance of the protec- 
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tive heat tiles because it is proport ional  to the 

temperature of the outside surface. From the 

definitions 

D ~  O~ax (6) 
z m u  

where Qm~=3.305 x 109. 

2) Normal load factor constraint 

The load factor normal to the airframe is de- 

cided by the acceleration which human or the 

structure of the airframe or the instrument can 

bear. 

g0nrnax (7) 
D <  C L / C o  cos a + s i n  a 

where the maximum load factor nmax=2, a is 

angle of attack. 

3) Equilibrium glide constraint 

The equilibrium glide constraint is the limit 

in which the re-entry vehicle can fly without 

at zero-bank angle. From the nose-down 

definition 

4) Dynamic pressure constraint 

It is applied at low-speeds of re-entry. If 

the dynamic pressure constraint exceeds the 

limit, the control surface returns to neutral con- 

dition in spite of  operating at the control sur- 

face. The condition for maximum dynamic pres- 

sure provides 

D K  SCDqmax (9) 
m 

where the maximum allowable dynamic pressure 
qmax = 16,280 (N/m2). 

5) Range constraint 

The objective of  the range error constraint is 

such that the difference between the actual range 

s, and the pre-designed range Sre/is zero. From 

the definition of time derivative of range 

~ = v  cos 7" (10) 

Integrating this with respect to t and replacing 

the integration variable with 7. using Eq. (2) 
result in 

s = v cos  7 d t  = v cos  7 d v  (11) 
- D - g  s in  9" 

Since 7. is small we can write the range as 

f v j  v , 
S = Jvo ----~ av  (12) 

2.3 Performance index 
The control of an angle of attack has an 

efficient in high frequency domain. However, 

assuming the total heating can be reduced by 

selecting a proper angle of attack, the only in- 

clination of drag acceleration with respect to 

velocity can be considered as the performance 

index : 

. v y  r 2 
J=mmfojv  D (v) dv  (13) 

2.4 Permissible flight corridor for re-entry 
The re-entry trajectory is limited by the con- 

straints that determine the magnitude of the 

drag acceleration. The re-entry corridor is also 

defined by these constraints. Therefore, drag 

accelerations at each node satisfy Eq. (14) which 

is defined as the minimum and the maximum 

drag acceleration in each node, It is also con- 

verted by a transformation of Eq. (15). Do and 

Ds are fixed values which are obtained from the 

definition of drag acceleration. Because they sat- 

isfy a prescribed flare maneuver. 

D~b (v3 < D (v3 < Dub (v~) 
(14) 

P ( v o )  =Do, D ( v s ) = D ,  

D,=Dtb(v , )  +0.5 × [Dub(v~) --D,b(v,)  1, (15) 
/----0, 1 , 2 , . . - , f  

3. Longitudinal Control via Inverse 
Dynamics Method 

In this section, we present inverse dynamics 

method (Kim and Ryu, 2002). The guidance 

system also consists of longitudinal guidance 

and lateral guidance. The former has two parts, 

one generates the reference drag acceleration 

which is based on the states and the other is 

the trajectory control which is acquired by the 
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attitude angle needed to track the reference tra- 

jectory. From the definition of drag accelera- 
tion Eq. (4), the first derivative of D with res- 

pect to v is 

O ' =  2D q _ D  ~ - o  
v P O'-b Cg (16) 

Replacing p '  by exponential atmosphere model 
(Regan, 1993), Eq. (16) is 

D'=2D-r 'DI~+ ~-~ Cg (17) 

Form Eqs. (1) and (2), since 7 is very small for 
atmospheric re-entry, 

r ' - - .  V)" ~ V ~ _  (18) 
D+ g7 D 

Substituting Eq. (18) for r '  in Eq. (17), 

D'-=(2-1-~)D+vI~7 (19) 

Second derivatives of D from Eq. (19) 

D, 2(D'v-D)  q (D'C~-CgD) Cg 
v2 CZ° (20) 

+ ~ +  v¢7~,'+¢77 

Substituting the first derivative of flight path 
angle with respect to velocity for time derivatives 
in Eqs. (2) and (3), 

7,=_ uff g v (21) 
v vD rD 

Replacing Eq. (20) by Eq. (21) and represen- 
tation about )" in Eq. (19), 

' 1 

(22) 
_{  4 ~_ c~_~ c5 C3 )D_~u 

\ v ~ " Cg vCo C~ 

The control variable can be obtained from Eq. 
(22) 

D" 1 [3 +CD'~D, 
~=-W+~t7  ~-~/ 

1 (v4 ~ ~ C~ Cg) D (23) 
+ -~ Cg C~ 

+ 7 ) '  

4. Diseretization Using Orthogonal 
Polynomials 

4.1 Conversion of Dynamics into a TPBVP 

via Linearization 

Equations (1)-(3) can be linearized for the 
solutions of c~u according to Eq. (5). Let c~x---- 
( Sr, By, ~9") r ~X and 3u denote the differences 
between the actual and the nominal values in x 
and u. The linearized dynamics of Eqs. (1)-(3) 
can be considered as the general form LTV system 
as following 

~(r)  =A(r) ax(r) +B(r) au (r), 
(24) 

0 ~ r ~ t j  

with the initial conditions 

x (r) =x0 (25) 

here, c~x(r), 3 u ( r ) ,  A(r), and B(r) are nX1 
state vectors, m X 1 control vectors, n X n matrix 
and n X rn matrix, respectively. The problem is to 
determine the optimal control 3u (r) and corre- 
sponding state vector ~x (r) satisfying Eqs. (24) 
and (25) while minimizing the quadratic per- 
formance index 

]=13xr (rj) P~3x(rl) 
(26) 

where PI  and Q (r) are n x n symmetric posi- 
tive semi-definite matrices and R (r) is a m x m 
symmetric positive definite matrix. 

The Hamiltonian for this system is 

H = l [ 3 x r ( r )  Q ( r ) & ( r )  +Bur ( r )R( r )8u  (r) ] (27) 

+ 3Ar (r) [A(r) & (r) +B( r )  ~u(r) ] 

where &~(r) are costate vectors. 
According to the calculus of variations, we 

have costate equations 

3A= OH 
aax (28) 

= - [ Q ( r )  ax ( r )  + A T ( r )  aa( r )  ] 

and from the necessary optimality conditions 

OH 
- - = 0  O~u 
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8 u ( r ) = - R - * ( r ) B r ( r ) a A ( r )  (29) 

The transversality conditions are 

8A (r,) =PsSx (ri) (30) 

The following linear TPBVP (Two-Point Boun- 
dary Value Problem) (Bryson, 1975) can be ob- 
tained by substituting Eq. (29) into Eq. (24). 

[8x18~ = _ I  A0(r)(r) -B(r)R<(r)Br(r)lI-zr (r) 8xsA ] ( 3 1 )  

4.2 Pseudospectra l  Legendre Method ( P L M )  

The collocation type method (Elnagar and 
Razzaghi, 1997; Han et al., 1989) presented in 
this paper has an objective of finding poly- 
nomial approximations for the state, costate 
and control functions in terms of their values at 
some carefully chosen Legendre-Gauss-Lohatto 
(LGL) points. The LTV systems with quadratic 
criteria can be reduced to solving a system of 
algebraic equations using this method. To order 
to use the LGL nodes which lie in the [ - 1 ,  1], 
the time transformation is introduced for t ~  

Eto, t , , ]=~- l ,  13; 

(r,-- r0) t + (r j+ r0) 
r =  (32) 

2 

It follows that Eq. (31), Eq. (25) and (26) can be 
replaced by 

8 x ( t ) =  t~2t~ [A( t )&( t )  
(33) 

- B ( t )  R < ( t )  Br  (t) 8A(t) ] 

8,~(t) = - t~,-to [Q(t) 8x( t )  
2 (34) 

+ A r ( t )  SA(t) ] 

ax (--  1) =x0 (35) 

1 8xr(1)p18x(1) 1 = ~  

+ tyTtO f l E S x r ( t ) O ( t ) S x ( t  ) (36) 

+ 8u r  (t) R(t)  8u (t) J 

Let L~v be the Legendre polynomial of degree 
N on the interval [--1,  1] ; 

I mz , N 2 N ~ 2 l )  :>__e (-,) ( , )( (37  

In the Legendre pseudospectral approximation 
(Sim and Kim, 1996 ; Canuto et al., 1988) of Eq. 
(33) through Eq. (36), the LGL points are used, 
h, l = 0 ,  " ' ,  Nwhich  are given by t0=- - l ,  &-----1. 
And for l ~ l < N - l ,  t~ are the zeros of LN, the 
derivative of the Legendre polynomial Lu. There 
are no closed form expressions for these nodes, 
and they have to be computed numerically. For 
approximating the continuous equations, a poly- 
nomial approximation form are 

N 

axN (t) = Z & ( t , )  ¢ , ( t )  
/=0  

N 

8u"  (t) = Z S u (  t,) ¢ , ( t )  (38) 
l=0  

N 

8~" (t) = E B b ( t , ) ¢ , ( t )  
/=1 

where for 1--0, 1, .. ' ,  N 

] ( t z -1)LN(t )  
O~(t) - N ( N + I ) L N ( h )  t - t~  (39) 

are the Lagrange polynomials of order N which 
interpolate the function at the LGL points. The 
interpolating polynomials satisfy the Kronecker 
delta. From this property of ~bz it follows that 

&N ( t,) = 8x ( t,) 

8u N (t,) = 8u (t,) (40) 

Generally the approximations are expressed as 

8x(t) .~Sx u, 8u(t) ~ S u  N, 8A(t) .~SA u (41) 

but in this collocation method, as stated in the 
Eq. (40) the values of the approximate state, 
control and costate functions are given exactly 
by the value of the continuous functions at these 
points. Setting X =  (a r, a r, ..., a[~), U = (b0 r, b[, 
• .., bur), A =  (c if, c[ ,  ..., cur), the new notation 

are 

a, : =Sx(t~), b~ : =Su(t~), ct : =SA(tt) (42) 

to rewrite Eqs. (40) in the form : 

N 

8xU(t) = ~a~b~( t )  
l=O 

N 

8u u ( t )  = 52 b ,¢ ,  ( t )  (43) 
l=0  

N 

8,F'(t) = ~ c , ~ ( t )  
l=O 
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The derivative d~ n and &i n in terms of $x N (t) 
and &In(t) at the collocation points h using a 

matrix multiplication are 

N 

d2n (tk) = 5-],dx(h) ~( t~)  
/=0  

N 

= E D k , d x  (h) (44) 
l=0  

N 

= ~,,Dhzal 
l=O 

N 

d,in (t~) = E &l(t ,)  ~,( t , )  
l=O 
N 

= E D k , d A ( t , )  
/=0  

N 

= 5"!.Dkzcl 
/=0  

(45) 

where Dm are entries of the ( N + I ) x  ( N + I )  

differentiation matrix D. 

The Eq. (29) and Eqs. (33) and (34) are 

discretized and transformed into the following 

algebraic equations in terms of the coefficients 

a, b and c at the LGL nodes, tk : 

bk = - - R - l ( r )  B r (r) ck (46) 

~o~, re--to ~ A  ~ B R - 1 B r c  v k t a t - - - - T - - ~ k . k - -  k kj = 0  

~ o D ~ c ~ + ~ (  Qkah + A~ch) = 0  

(47) 

where for a generic matrix A ( t ) ,  the notation 

A~ denotes A(tk), and k = 0 ,  1, "", N. Also the 

0 is the zero vector of approximate dimension. 

From Eqs. (46) and (47) 

u = M A  (48) 

E X  r~-  ro F A = o  
2 

r e -  ro G X  + H A =  o 
2 

(49) 

In the above, 0k×n, 0nxn, and In are k × n, n × n 

zero matrix, and n × n unity matrix, respectively. 

The initial and final conditions are 

a (0) = dx0 = a0 (50) 

c (N) =PedxN = P m u  (51) 

The block matrix form of Eqs. (49) is 

I~  - v z =  (52) 

L /51 /52 

where, z r =  [ X  r, At] .  n X n(N+ 1) matrices t51 

and 152 are 

/5,= [0,, ..., 0,, Pf] 
(53) 

/52= [o., . . . ,  0 , ,  - I .3  

When V is present as V =  [ ¼ lie] 

Voao+ V,e = 0  (54) 

where vector g is defined as 

e = [ a  r, aL  "", a r, Co r, "", c~r] r (55) 

From Eq. (54), e is derived as 

e = - Ve\ ¼ d o =  Wao (56) 

Since z = [a0, e] r, z is 

w j  ao~L wzj ao (57) 

The set of control variables obtained from Eq. 

(48) is 

U = M A = M W 2 a o  (58) 

If the initial states are known, the states, costa- 

tes and controls at the LGL points can be solv- 

ed from Eqs. (57) and (58), and the values of 

variables at instants of time between the LGL 

points can be obtained by interpolation. It should 

be noticed that we obtained these solutions with- 

out any integration or iterations. Regarding the 

difference between the current states and reference 

states as the new initial states, Eq. (58) con- 

stitutes a close loop control law that can be 

rapidly performed in the real ime manner. 

4.3 Application of PLM into re-entry pro- 

blem 
For each state and control vector, N th degree 

interpolating polynomials (Elnagar et al., 1995) 

for RE problem can be approximated as the 

drag acceleration function with v ; 
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At 

D~(v) = ~ D ( v , )  pz(u) 
/=0  

N 
D '~¢ (vk) = ~ D~I?D (v,) (59) 

l = 0  

N 
D "~ (vk) = ~2 Et2?D (v,) 

/=0  

where E (1) and E (z) are first and second order 

differentiation matrix, respectively. 

The range constraint based on the PLM from 

Eq. ( l l )  is 

Uo-- U~ ~-1 Vt 
s = ~- -~'6Dzz wz (60) 

where wz is weighting. 

5. Numerical  Results 

This chapter shows the reference trajectory by 

an optimization and the tracking p e r f o r m a n c e "  

onto it. All  physical and aero-coefficients data 

used in this simulation is from Lu (1997). 

m---- 104,305 kg, S--391.22 m 2 

The aerodynamic coefficients CL, CD for the 

basic vehicle are given in tabulated data as func- ~- 

tions of Mach number and angle of attack. For  

the reference drag trajectory, the coefficients are 

approximated by fitting the data in hypersonic 

regimes with 

CL=--O.O41065+O.O16292a+O.OOO26024a 2 (61) 

CD----O.O80505-O.O3026CL +0.86495C 2 (62) 

The pre-designed angle of attack is 40 deg from 

v-----7450m/s to v = 4 5 7 0 m / s  for protection of 

total heating accumulated in the airframe, and a0 

then reduced to 14 deg monotonically from v = 7s 

4570m/s  to v = 7 6 0 m / s  where the handover 
7fl 

to the terminal area energy management system 

takes place. 

The atmospheric entry point is at an altitude ~m 

of 1222.155 km, the earth relative velocity 7450 ~ 

m/s  and the flight path angle --0.5 deg at this so 
point. The reference drag acceleration is generat- 

4s 
ed by the Matlab-code fmincon which use the 
SQP algorithm, the elapsed time by Pentium 4 4o 

1.6 GHz-CPU is 15.06 sec. ss 

The integration is processed until the final 
velocity of 760 m/s. At that time, altitude is 

22.165 km and the flight path angle is --6.899 

deg. Fig. 2 shows the comparison between the 

reference trajectory which is optimized with all 

constraints, and the real one from Eqs. (1)- (3) .  

The number of iteration is 104, and reference 

range is 3000 km. The history of control input a 

is shown in Fig. 3. 

The t ime- to-go guidance scheme in Ref. 

(Elnagar and Razzaghi, 1997) can be explained 

as followings. First set up of optimization data 

about states, control variable, then, the selection 

of initial perturbations 8x0. The actual trajec- 

tory is then controlled by U = S U + U  * with 

the nonlinear dynamics governed by system Eqs. 

(1 ) - (3 ) ,  where the asterisk denotes the reference 

value. The next perturbations dx are generated 

from 8 x = x - - x  *, not from Eq. (24), where x is 

14 

12 

10 

Fig. 2 

Upper B 0 u n d a r r r r r r r r r ~ - -  ~.~ 
J "  \ 

/ f /  ~\ 

, . . oo  I . . . .  
Reference drag Ilcceleration 

' ' ~ 0  ' ' ' = o  
",(m/see) 

Time histories of Drag Acceleration 

Interface of Re-E~ry 

' ' ~ o  ' ~ o  ' ~ o  IOO0 2OOO 4OOO B]O0 
v (m/s) 

Fig. 3 Time history of Bank angle 

fl000 



1526 Dae Woo Lee, Kyeum-Rae Cho and Hui Yan 

the state response  f rom non l inea r  dynamics  

with U = 3 U +  U*. This  procedure  to the f inal  

t ime is repeated. The  n u m b e r  o f  L G L  poin t  used 

in this  s imula t ion  is 30. Tab le  1 and 2 represent  

the difference between the actual  and  reference 

states accord ing  to three cases which  are defined 

Table 1 Differences of states for the open- loop guidance 

Cases Aro (km) A V0 (m/s) ATo (deg) 
Open loop 

A?'/ (km) AVy (m/s) AX/ (deg) AsF (km) 

1 0.5 80 0.9 5.168 315.18 2.664 379.59 

2 --0.5 --80 --0.9 --4.728 --202.239 --3.981 --296.86 

3 1.7 50 0.3 1.656 88.346 1.072 115.21 

4 -- 1.7 --50 --.0.3 -- 1.614 --76.47 -- 1.200 -- 106.2 

Table 2 Differences of states for the closed-loop guidance 

Closed loop 
Cases Aro (km) 

0.5 

--0.5 

1.7 

--1.7 

A V0 (m/s) 

80 

--80 

50 

--50 

AXo (deg) 

0.9 

--0.9 

0.3 

--0.3 

AXs (km) 

-- 1.394e-3 

1.7488e-3 

--0.986 

0.994 

AVs (m/s) A~i (deg) 

0.468 0.002 

--0.894 --0.004 

0.313 0.001 

--0.527 --0.002 

Ass (km) 

100.83 

--83.92 

59.44 

--56.74 

"f .............................................................................. i 4000 i/+~ -ti \\ l 
i 7~. \ 

. /  { 

.I(XXI 

-201XI ~ i 

O iO0 ~ 3GO ~ 500 000 700 800 

o,. t 

. .......... 

I ° ' ! \  7 
l-ol i \,_Jl 

~.o}i 
4),Bp 

0 100 ~ 0  300 dO0 500 ~ 700 8OO 

:o~ / \ / f - - >  = / /  "\\ 

.......................................... l "'i 

? °'l'\ 02 

o! / 7 ~ "\  .......... % > ~  

4t3~ i 

.o 4 [ ............................................................................ i 
0 100 200 ~ 100 SD0 ~ ~ 

Time variations of the states and control variable Fig. 4 
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2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ~ . . . . . . . . . . . . . . .  

1 .9  

1 8  

1 7  

1.5) = 

~ 1 4  

1 .3-  i 
E 

1.2,-  ! 

1 10 100 2(~ 300 400 500 600 700 800 
time (sec) 

Fig. 5 Time variations of the bank angle 

with the initial perturbations. Table 1 is for open 

loop guidance and Table 2 is for closed loop 

guidance, we can verify the more accurate results 

in closed loop system. Fig. 4 represents the con- 

vergent performance of  states and control vari- 

able in linear system. The bank angle variation in 

linear system is represented in Fig. 5. Successful 

trajectory regulation should lead to Ax--- ,0,  

and thus AU ~ 0, provided the trajectory dis- 

persions are not so large as to invalidate the 

linerization approximation or cause destabilizing 

control saturation. 

6. Conclusions 

Among the many guidance schemes, this pa- 

per introduce the inverse dynamics method with 

Legendre polynomial. This is one of colloca- 

t ion-type methods for quadratic optimal control 

problem, can be called spectral Legendre method. 

By this method, LTV systems is reduced to the 

linear TPBVP, then is transformed to a linear 

algebraic equations. Its solving requires only 

some matrix operations without any integration 

or iterations. Since the law has an approximate 

analytical expression associated with the initial 

states, it can be rapidly performed in the real 
time manner. 
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